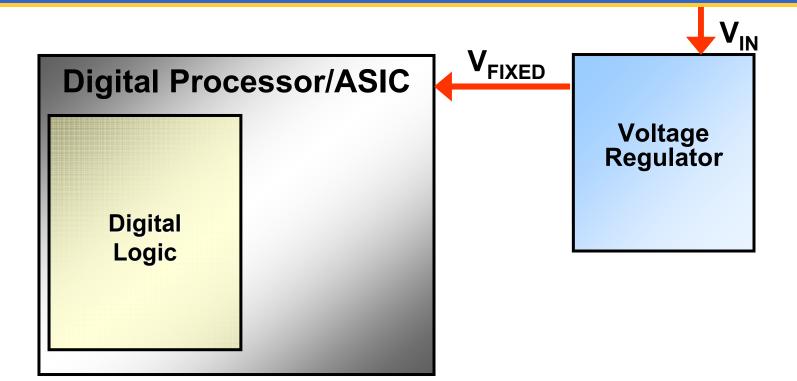
Adaptive Voltage Scaling (AVS)

Alex Vainberg Email: alex.vainberg@nsc.com October 13, 2010

Design Implementation

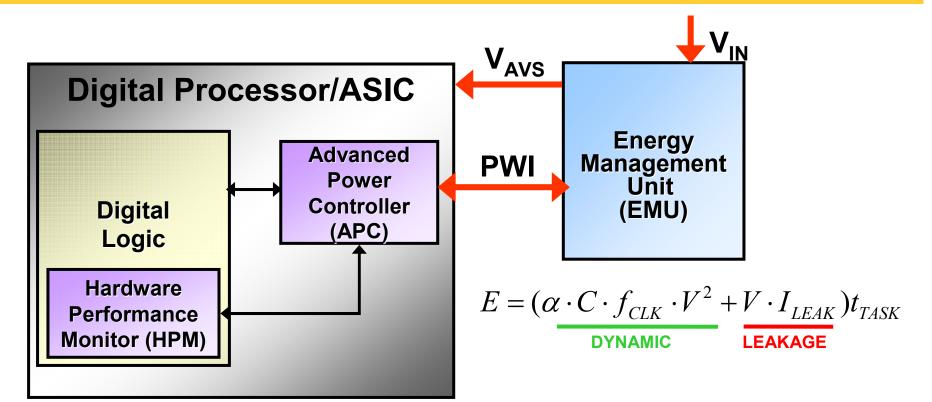
Hardware Performance Monitors Overview

AVS Introduction, Technology and Architecture


Design Implementation

Hardware Performance Monitors Overview

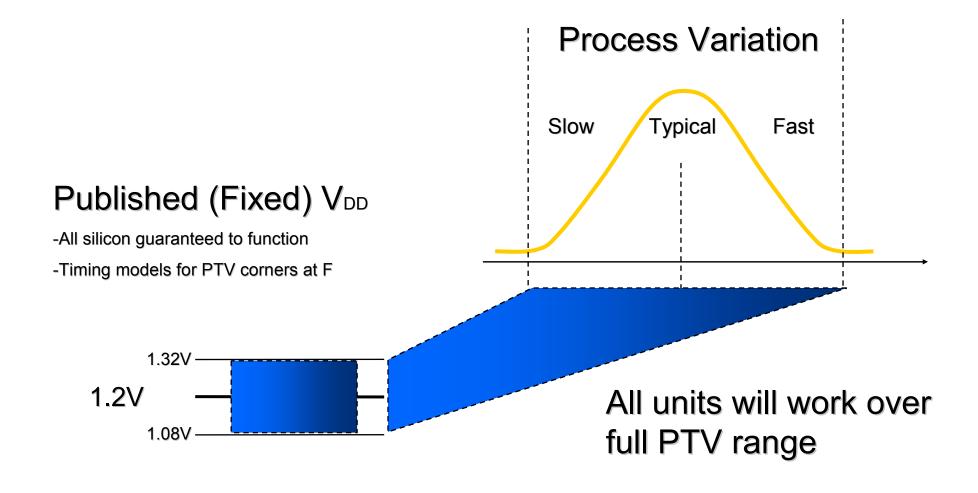
Traditional Power Management Delivery


Fixed Voltage = Inefficient System!!!

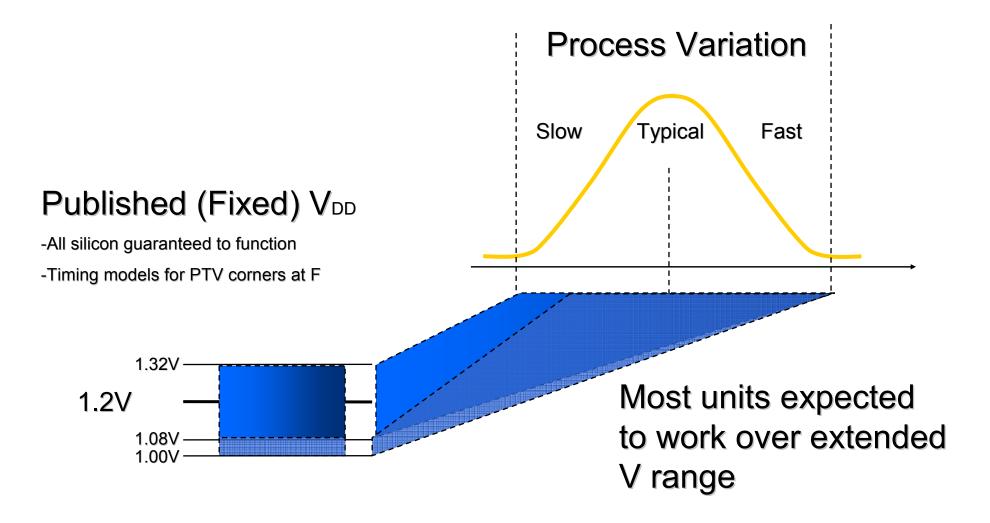
- No temperature compensation
- No adjustment for lower voltages at lower frequencies
- No compensating for process variation

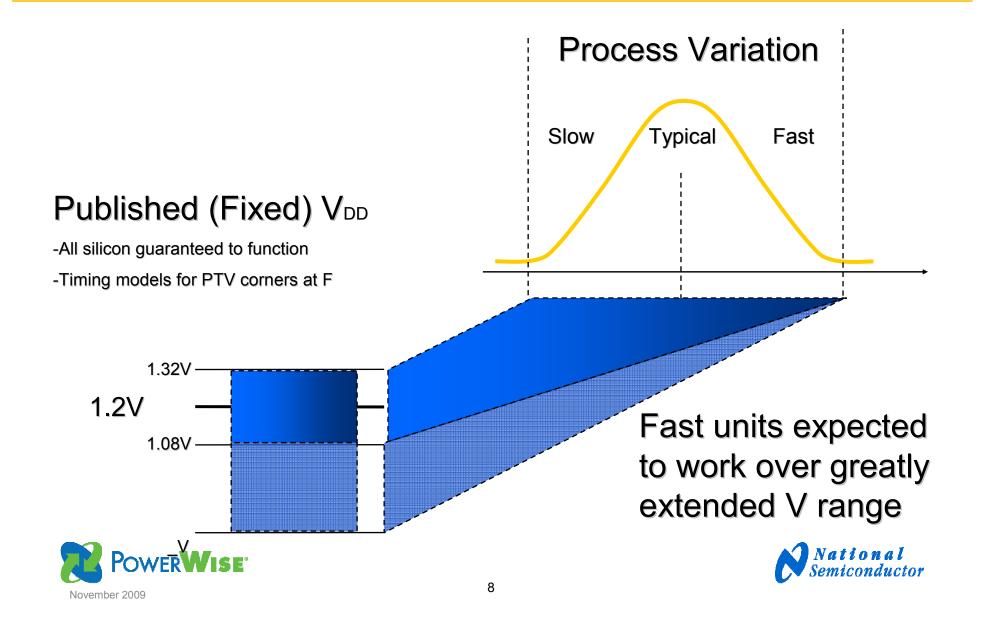
PowerWise® Adaptive Voltage Scaling (AVS)

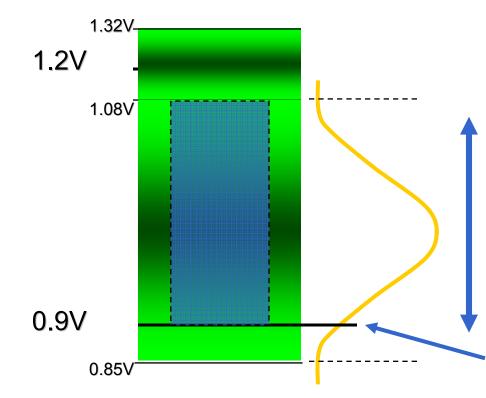
Adaptive Voltage Scaling = Maximum power savings


- Process and Temperature Compensation
- No need for frequency-voltage lookup tables
- Real-time continuous closed-up

PWI = PowerWise Interface


Operating Vdd Range – Device Performance Distribution


Optimizing Power Efficiency



Optimizing Power Efficiency

AVS Optimizing Power / Full Range

Published (Fixed) VDD

- All silicon guaranteed to function
- Timing models for PTV corners at F

AVS_Vdd for Lowest Power

-Power controller maintains Vdd to lowest level possible based on on-chip PTV performance measurement

- Slow silicon possible lower Vdd based on slack timing

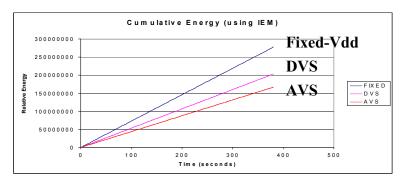
Clamp Minimum VDD

- Independent clamp level for minimum Vdd set with power controller
- Overrides monitor request to go to a lower Vdd

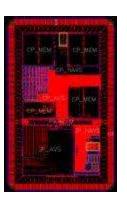
Process Variability Comparison

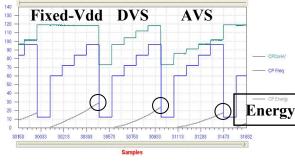
NMOS									
	Performance Spread								
		Voltage			Temperature		Voltage		
	I _{Dsat} [uA/um]	V _{dd} -10%	125°C	25°C			-45°C	V _{dd} +10%	
	Corner	SS	SS	SS	Π	FF	FF	FF	
	0.13µm	-39.60%	-24.91%	-14.46%	0.00%	14.19%	25.05%	46.17%	
	90nm G	-42.73%	-28.55%	-20.04%	0.00%	24.06%	33.15%	54.22%	
SS	65nmG	-42.38%	-26.95%	-21.61%	0.00%	23.32%	30.55%	55.01%	
Process	40nm G	-45.43%	-28.29%	-24.29%	0.00%	23.76%	30.61%	52.34%	
Pr	40nm LP	-47.87%	-29.36%	-25.30%	0.00%	28.69%	29.06%	55.61%	
PMOS									
		•		Perfo	Performance Spread				
	,	Voltage			Temperature	Voltage			
		vortage							
	I _{Dsat} [uA/um]	V _{dd} -10%	125°C		25°C		-45°C	V _{dd} +10%	
			125°C SS	SS		Æ	-45°C FF		
	I _{Dsat} [uA/um]	V _{dd} -10%			25°C	FF 13.84%		V _{dd} +10%	
	I _{Dsat} [uA/um] Corner	V _{dd} -10% SS	SS	SS	25°C TT		Æ	V _{dd} +10% FF	
SS	I _{Dsat} [uA/um] Corner 0.13µm	V _{dd} -10% SS -35.11%	SS -16.67%	SS -13.96%	25°C TT 0.00%	13.84%	₩ 19.25%	V _{dd} +10% FF 44.89%	
ocess	I _{Dsat} [uA/um] Corner 0.13µm 90nm G	V _{dd} -10% SS -35.11% -37.46%	SS -16.67% -20.87%	SS -13.96% -19.29%	25°C TT 0.00% 0.00%	13.84% 24.03%	₩ 19.25% 29.03%	V _{dd} +10% FF 44.89% 54.90%	
Process	I _{Dsat} [uA/um] Corner 0.13µm 90nm G 65nmG	V _{dd} -10% SS -35.11% -37.46% -39.73%	\$\$ -16.67% -20.87% -22.23%	SS -13.96% -19.29% -20.30%	25°C TT 0.00% 0.00% 0.00%	13.84% 24.03% 20.13%	FF 19.25% 29.03% 25.28%	V _{dd} +10% FF 44.89% 54.90% 52.65%	

Design Implementation

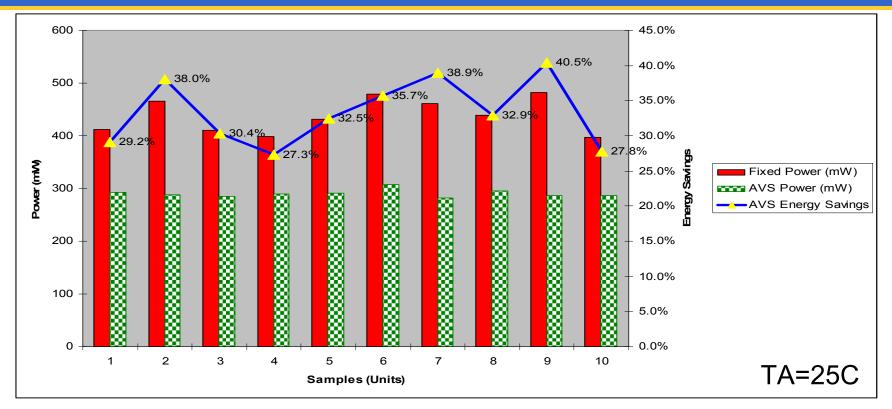

Hardware Performance Monitors Overview

AVS Results on 130nm



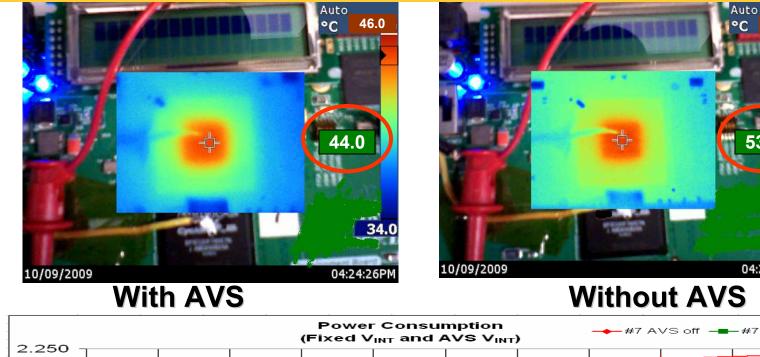


- ARM926EJ-S core
- Voltage and frequency scaling of CPU, Caches
- Four performance points:
 - 60, 120, 180, 240 MHz
 - 0.7V 1.2V Adaptive Voltage Range



- Dual ARM7 CPU cores
- Voltage and frequency scaling of ARM7
- Performance points:
 - 96, 84, 72, 60, 12 MHz
 - 0.7V 1.2V Adaptive Voltage Range

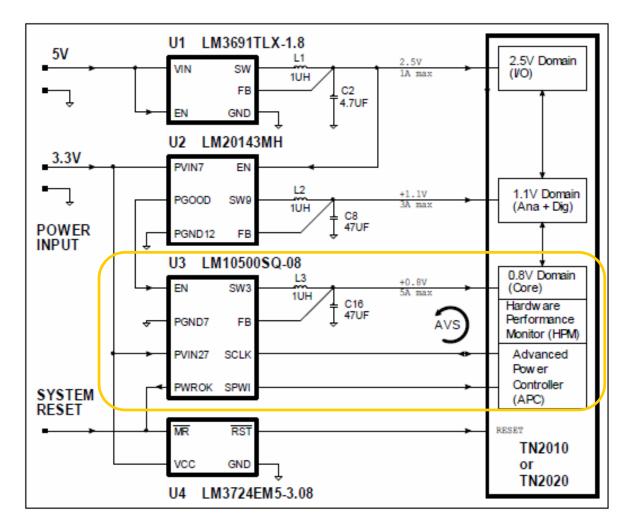
Measured AVS Power Savings




- Custom ASIC/SoC design
 - process 65nm, freq. greater than 750Mhz
- AVS reduced core power by 27 to 40% at maximum frequency

Power Saving and Thermal Performance, 65nm process

56.0


27.0

04:28:35PM

........

November 2009

TN2020 & NSC power solution

Measurements – TN20xx

Board 29

Measured

Measured

Тетр	AVS OFF				AVS ON				Power Savings
deg C	mV	mV (c. sns.)	А	Power W	mV	mV (c. sns.)	А	Power W	
-20.3	805.78	11.92	1.679	1.353	727.7	10.7	1.506	1.096	19.0%
18.7	810.16	14.78	2.082	1.687	718.8	12.9	1.814	1.304	22.7%
58.2	813.88	19.36	2.727	2.219	709.6	16.3	2.298	1.630	26.5%
98.0	818.14	29.31	4.128	3.377	699.7	23.7	3.332	2.332	31.0%

Board 30

Doard 30									Weasureu
Тетр	AVS OFF				AVS ON				Power Savings
deg C	mV	mV (c. sns.)	А	Power W	mV	mV (c. sns.)	А	Power W	
-20.3	805.6	11.51	1.621	1.306	722.3	10.3	1.451	1.048	19.8%
18.1	811.75	14.17	1.996	1.620	713.7	12.3	1.735	1.238	23.6%
58.2	817.64	18.39	2.590	2.118	704.3	15.5	2.176	1.533	27.6%
98.0	824.11	26.8	3.775	3.111	695.0	21.2	2.986	2.075	33.3%

AVS System Impact

System Performance

- Once enabled AVS runs in background
- No processing overhead

• Energy Savings – Scaled Voltage Domain

- Savings vary depending on process geometry, design implementation, and frequency scaling profile
- Expected energy savings for typical silicon will be 20-50% based on process and temperature variations

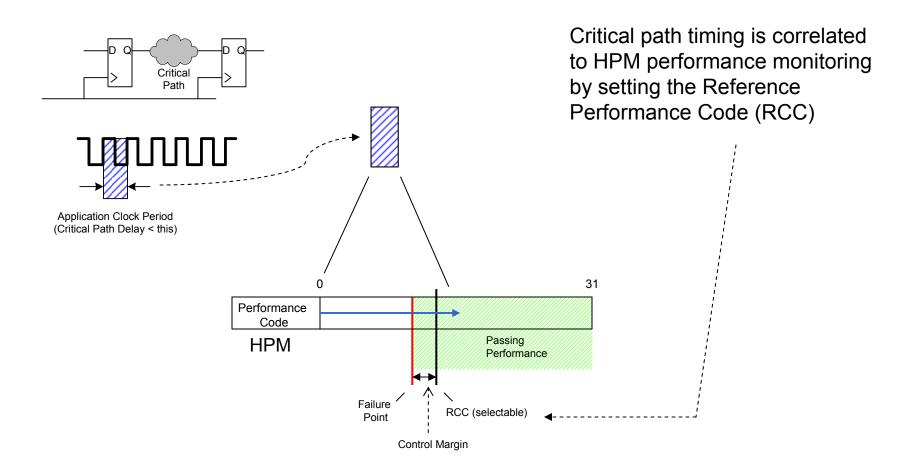
System Risk Mitigation

- AVS is an additional function in the ASIC/Processor and the power conversion device
- AVS compliant ASIC/Processor and power conversion devices can still operate at fixed voltage or DVS without any design changes

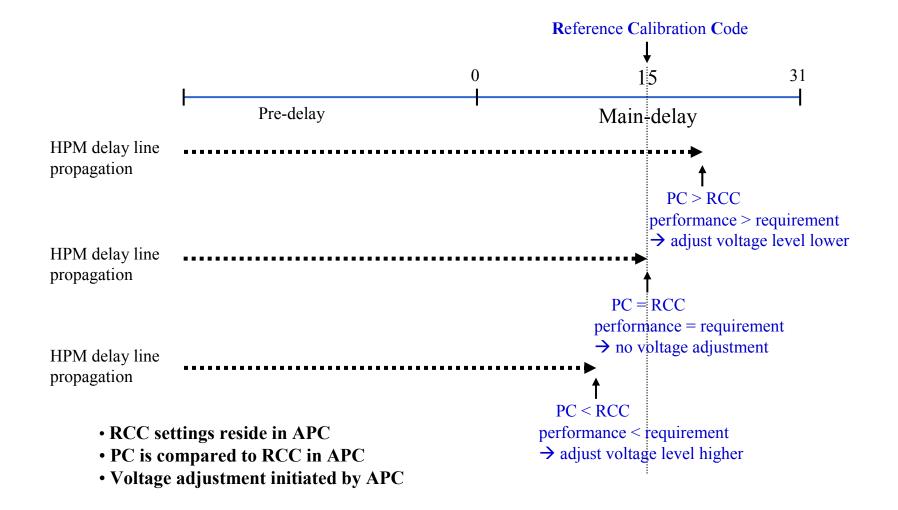
AVS Introduction, Technology and Architecture

Design Implementation

Hardware Performance Monitors Overview


HPM Overview

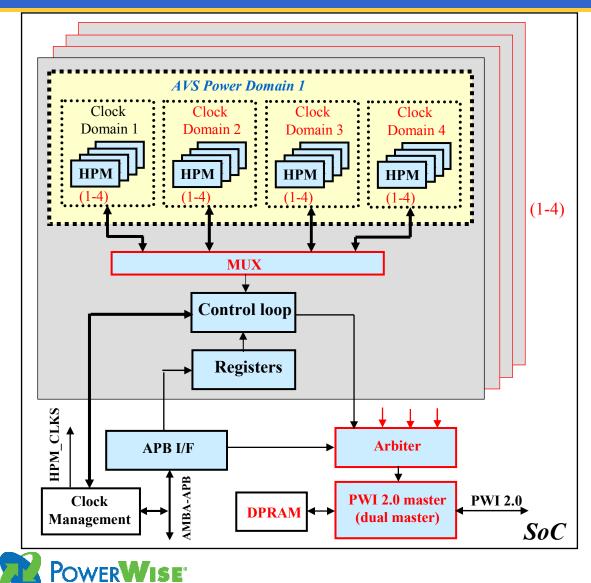
- HPM is Embedded in the voltage domain that is AVS controlled
- HPM translates the voltage level into silicon performance information
- HPM generated silicon performance information is a function of voltage level and HPM clock
- APC makes use of silicon performance information to determine the optimum voltage level for the required target performance
- Structurally coded synthesizable RTL to facilitate ease of layout P&R for optimizing silicon performance tracking accuracy


HPM and Critical Path Monitoring

HPM Performance Code and APC Voltage Control

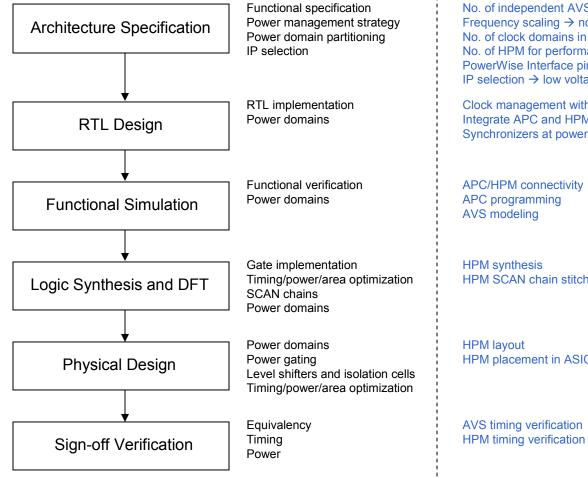
AVS Introduction, Technology and Architecture

Design Implementation



Hardware Performance Monitors Overview

APC2 IP SoC View

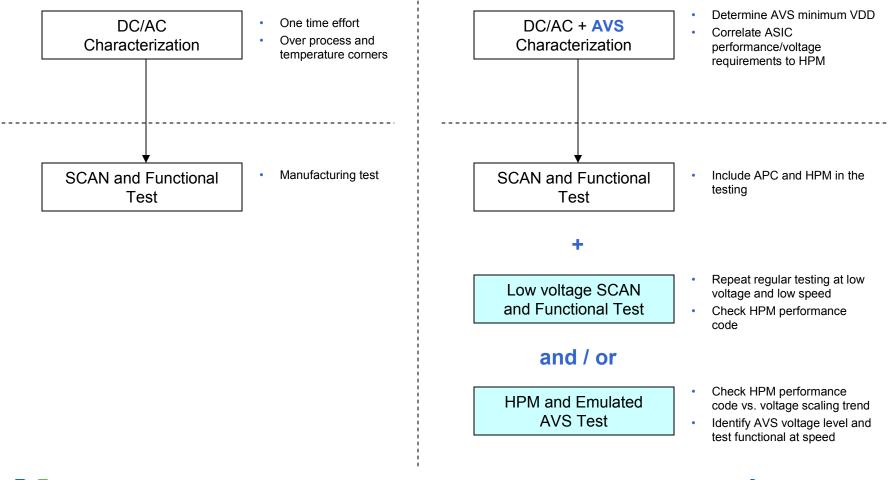


- Up to 4 AVS domains
- 1 4 per scalable clocks per AVS domain
- 1-4 HPM per clock domain
- APC2
 - PWI2.0 interface master
 - Up to 4 AVS domains
 - Enhanced control-system
 - Adaptive Voltage Scaling closed-loop control based on performance measurement data sampled by HPM
 - Open-loop voltage scaling via voltage register table
 - 8 performance levels + retention level
 - Control registers programmed via AMBA-APB interface
 - Auto PL0 back-bias
 - Trace port for debug

AVS Design Flow

Power-aware ASIC Design Flow

Adding the AVS


	No. of independent AVS power domains Frequency scaling → no. of performance levels No. of clock domains in each AVS power domain No. of HPM for performance tracking PowerWise Interface pins IP selection → low voltage std cells and memoriesAPC/HPM Configurations
	Clock management with performance level interface Integrate APC and HPMs Synchronizers at power domain boundary
	APC/HPM connectivity APC programming AVS modeling
	HPM synthesis HPM SCAN chain stitching
6 	HPM layout HPM placement in ASIC
	AVS timing verification

AVS Production Flow

Typical ASIC Production Flow

AVS ASIC Production Flow

N**ational** Semiconductor

